Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or high-index gain medium

Opt Express. 2011 Jul 4;19(14):12925-36. doi: 10.1364/OE.19.012925.

Abstract

A theoretical investigation of a nano-scale hybrid plasmonic waveguide with a low-index as well as high-index gain medium is presented. The present hybrid plasmonic waveguide structure consists of a Si substrate, a buffer layer, a high-index dielectric rib, a low-index cladding, a low-index nano-slot, and an inverted metal rib. Due to the field enhancement in the nano-slot region, a gain enhancement is observed, i.e., the ratio ∂G/∂g >1, where g and G are the gains of the gain medium and the TM fundamental mode of the hybrid plasmonic waveguide, respectively. For a hybrid plasmonic waveguide with a core width of w(co)=30nm and a slot height of h(slot)=50nm, the intrinsic loss could be compensated when using a low-index medium with a moderate gain of 176dB/cm. When introducing the high-index gain medium for the hybrid plasmonic waveguide, a higher gain is obtained by choosing a wider core width. For the high-index gain case with h(slot)=50nm and w(co)=500nm, a gain of about 200dB/cm also suffices for the compensation of the intrinsic loss.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Computer Simulation
  • Computer-Aided Design
  • Equipment Design
  • Equipment Failure Analysis
  • Light
  • Models, Theoretical*
  • Refractometry / instrumentation*
  • Scattering, Radiation
  • Surface Plasmon Resonance / instrumentation*
  • Systems Integration