Simulating visual qualia in the CERA-CRANIUM cognitive architecture

Adv Exp Med Biol. 2011:718:223-38. doi: 10.1007/978-1-4614-0164-3_18.

Abstract

The concept of qualia poses a central problem in the framework of consciousness studies. Despite it being a controversial issue even in the study of human consciousness, we argue that qualia can be complementarily studied using artificial cognitive architectures. In this work we address the problem of defining qualia in the domain of artificial systems, providing a model of "artificial qualia". Furthermore, we partially apply the proposed model to the generation of visual qualia using the cognitive architecture CERA-CRANIUM, which is modeled after the global workspace theory of consciousness. It is our aim to define, characterize and identify artificial qualia as direct products of a simulated conscious perception process. Simple forms of the apparent motion effect are used as the basis for a preliminary experimental setting focused on the simulation and analysis of synthetic visual experience. In contrast with the study of biological brains, the inspection of the dynamics and transient inner states of the artificial cognitive architecture can be performed effectively, thus enabling the detailed analysis of covert and overt percepts generated by the system when it is confronted with specific visual stimuli. The observed states in the artificial cognitive architecture during the simulation of apparent motion effects are used to discuss the existence of possible analogous mechanisms in human cognition processes.

MeSH terms

  • Artificial Intelligence*
  • Cognition*