Effect of (L:D) Aspect Ratio on Single Polypyrrole Nanowire FET Device

J Phys Chem C Nanomater Interfaces. 2010 Aug 12;114(31):13375-13380. doi: 10.1021/jp104377e.

Abstract

Effect of different aspect ratio (length to diameter ratio, L:D) on single polypyrrole (Ppy) nanowire based field effect transistor (FET) sensor for real time pH monitoring was studied. Ppy nanowires with diameters of ~60, ~80 and ~200 nm were synthesized using electrochemical deposition inside anodized aluminium oxide (AAO) template and were assembled using AC dielectrophoretic alignment followed by maskless anchoring on a pair of gold electrodes separated with different gap lengths. Microfabricated gold electrode patterns with gap size between 1 - 4 μm were developed by means of MEMS technique (photolithography). Using field effect transistor geometry with pair of microfabricated gold contact electrodes serving as a source and a drain, and a platinum (Pt) mesh (anchored in a microfluidic channel) was used as a gate electrode. When effect of different aspect ratio of the nanowire were compared, higher sensitivity was recorded for higher aspect ratio. The sensitivity was further improved by modulating the gate potential. These FET sensors based on single polypyrrole nanowire exhibited excellent and tunable sensitivity towards pH variations.