Synthesis of gold and silver nanoparticles by electron irradiation at 5-15 keV energy

Nanotechnology. 2007 Apr 4;18(13):135602. doi: 10.1088/0957-4484/18/13/135602. Epub 2007 Feb 28.

Abstract

Thin coatings (∼10 µm) made from a mixture of polyvinyl alcohol (PVA) and HAuCl(4) or PVA and AgNO(3) on quartz plates were irradiated with 5-15 keV electrons, at room temperature. The electron energy was varied from coating to coating in the range of 5-15 keV, but electron fluence was kept constant at ∼10(15) e cm(-2). Samples were characterized by the UV-vis, XRD, SEM and TEM techniques. The plasmon absorption peaks at ∼511 and ∼442 nm confirmed the formation of gold and silver nanoparticles in the respective electron-irradiated coatings. The XRD, SEM and TEM measurements reveal that the average size of the particles could be tailored in the range of 130-50 nm for gold and from 150-40 nm for silver by varying the electron energy in the range of 5-15 keV. These particles of gold and silver embedded in the polymer could also be separated by dissolving the coatings in distilled water.