Transmission of information between complex systems: 1/f resonance

Phys Rev E Stat Nonlin Soft Matter Phys. 2011 May;83(5 Pt 1):051130. doi: 10.1103/PhysRevE.83.051130. Epub 2011 May 31.

Abstract

We study the transport of information between two complex systems with similar properties. Both systems generate non-Poisson renewal fluctuations with a power-law spectrum 1/f(3-μ), the case μ=2 corresponding to ideal 1/f noise. We denote by μ(S) and μ(P) the power-law indexes of the system of interest S and the perturbing system P, respectively. By adopting a generalized fluctuation-dissipation theorem (FDT) we show that the ideal condition of 1/f noise for both systems corresponds to maximal information transport. We prove that to make the system S respond when μ(S)<2 we have to set the condition μ(P)<2. In the latter case, if μ(P)<μ(S), the system S inherits the relaxation properties of the perturbing system. In the case where μ(P)>2, no response and no information transmission occurs in the long-time limit. We consider two possible generalizations of the fluctuation dissipation theorem and show that both lead to maximal information transport in the condition of 1/f noise.

Publication types

  • Research Support, Non-U.S. Gov't