A Zeeman slower design with permanent magnets in a Halbach configuration

Rev Sci Instrum. 2011 Jun;82(6):063115. doi: 10.1063/1.3600897.

Abstract

We describe a simple Zeeman slower design using permanent magnets. Contrary to common wire-wound setups, no electric power and water cooling are required. In addition, the whole system can be assembled and disassembled at will. The magnetic field is however transverse to the atomic motion and an extra repumper laser is necessary. A Halbach configuration of the magnets produces a high quality magnetic field and no further adjustment is needed. After optimization of the laser parameters, the apparatus produces an intense beam of slow and cold (87)Rb atoms. With typical fluxes of (1-5) × 10(10) atoms/s at 30 m s(-1), our apparatus efficiently loads a large magneto-optical trap with more than 10(10) atoms in 1 s, which is an ideal starting point for degenerate quantum gas experiments.