Aerobic exercise training-induced left ventricular hypertrophy involves regulatory MicroRNAs, decreased angiotensin-converting enzyme-angiotensin ii, and synergistic regulation of angiotensin-converting enzyme 2-angiotensin (1-7)

Hypertension. 2011 Aug;58(2):182-9. doi: 10.1161/HYPERTENSIONAHA.110.168252. Epub 2011 Jun 27.

Abstract

Aerobic exercise training leads to a physiological, nonpathological left ventricular hypertrophy; however, the underlying biochemical and molecular mechanisms of physiological left ventricular hypertrophy are unknown. The role of microRNAs regulating the classic and the novel cardiac renin-angiotensin (Ang) system was studied in trained rats assigned to 3 groups: (1) sedentary; (2) swimming trained with protocol 1 (T1, moderate-volume training); and (3) protocol 2 (T2, high-volume training). Cardiac Ang I levels, Ang-converting enzyme (ACE) activity, and protein expression, as well as Ang II levels, were lower in T1 and T2; however, Ang II type 1 receptor mRNA levels (69% in T1 and 99% in T2) and protein expression (240% in T1 and 300% in T2) increased after training. Ang II type 2 receptor mRNA levels (220%) and protein expression (332%) were shown to be increased in T2. In addition, T1 and T2 were shown to increase ACE2 activity and protein expression and Ang (1-7) levels in the heart. Exercise increased microRNA-27a and 27b, targeting ACE and decreasing microRNA-143 targeting ACE2 in the heart. Left ventricular hypertrophy induced by aerobic training involves microRNA regulation and an increase in cardiac Ang II type 1 receptor without the participation of Ang II. Parallel to this, an increase in ACE2, Ang (1-7), and Ang II type 2 receptor in the heart by exercise suggests that this nonclassic cardiac renin-angiotensin system counteracts the classic cardiac renin-angiotensin system. These findings are consistent with a model in which exercise may induce left ventricular hypertrophy, at least in part, altering the expression of specific microRNAs targeting renin-angiotensin system genes. Together these effects might provide the additional aerobic capacity required by the exercised heart.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Angiotensin I / genetics
  • Angiotensin I / metabolism*
  • Angiotensin-Converting Enzyme 2
  • Animals
  • Female
  • Hemodynamics
  • Hypertrophy, Left Ventricular / genetics
  • Hypertrophy, Left Ventricular / metabolism*
  • Hypertrophy, Left Ventricular / physiopathology
  • MicroRNAs / genetics
  • MicroRNAs / metabolism*
  • Myocardium / metabolism*
  • Peptide Fragments / genetics
  • Peptide Fragments / metabolism*
  • Peptidyl-Dipeptidase A / genetics
  • Peptidyl-Dipeptidase A / metabolism*
  • Physical Conditioning, Animal / physiology*
  • Rats
  • Rats, Wistar
  • Receptor, Angiotensin, Type 1 / genetics
  • Receptor, Angiotensin, Type 1 / metabolism
  • Renin-Angiotensin System / physiology

Substances

  • MicroRNAs
  • Peptide Fragments
  • Receptor, Angiotensin, Type 1
  • Angiotensin I
  • Peptidyl-Dipeptidase A
  • Ace2 protein, rat
  • Angiotensin-Converting Enzyme 2
  • angiotensin I (1-7)