Label-free resistive-pulse cytometry

Methods Cell Biol. 2011:102:127-57. doi: 10.1016/B978-0-12-374912-3.00006-7.

Abstract

Numerous methods have recently been developed to characterize cells for size, shape, and specific cell-surface markers. Most of these methods rely upon exogenous labeling of the cells and are better suited for large cell populations (>10,000). Here, we review a label-free method of characterizing and screening cells based on the Coulter-counter technique of particle sizing: an individual cell transiting a microchannel (or "pore") causes a downward pulse in the measured DC current across that "pore". Pulse magnitude corresponds to the cell size, pulse width to the transit time needed for the cell to pass through the pore, and pulse shape to how the cell traverses across the pore (i.e., rolling or tumbling). When the pore is functionalized with an antibody that is specific to a surface-epitope of interest, label-free screening of a specific marker is possible, as transient binding between the two results in longer time duration than when the pore is unfunctionalized or functionalized with a nonspecific antibody. While this method cannot currently compete with traditional technology in terms of throughput, there are a number of applications for which this technology is better suited than current commercial cytometry systems. Applications include the rapid and nondestructive analysis of small cell populations (<100), which is not possible with current technology, and a platform for providing true point-of-care clinical diagnostics, due to the simplicity of the device, low manufacturing costs, and ease of use.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Algorithms
  • Animals
  • Antigens, Surface / chemistry
  • Blood Cells / cytology
  • Blood Cells / physiology
  • Cell Count / instrumentation
  • Cell Count / methods
  • Cell Shape
  • Cell Size
  • Colloids
  • Electric Impedance
  • Humans
  • Single-Cell Analysis / instrumentation*
  • Single-Cell Analysis / methods*

Substances

  • Antigens, Surface
  • Colloids