Significant FRET between SWNT/DNA and rare earth ions: a signature of their spatial correlations

ACS Nano. 2011 Jul 26;5(7):6052-9. doi: 10.1021/nn201911b. Epub 2011 Jul 1.

Abstract

Significant acceleration of the photoluminescence (PL) decay rate was observed in water solutions of two rare earth ions (REIs), Tb and Eu. We propose that the time-resolved PL spectroscopy data are explained by a fluorescence resonance energy transfer (FRET) between the REIs. FRET was directly confirmed by detecting the induced PL of the energy acceptor, Eu ion, under the PL excitation of the donor ion, Tb, with FRET efficiency reaching 7% in the most saturated solution, where the distance between the unlike REIs is the shortest. Using this as a calibration experiment, a comparable FRET was measured in the mixed solution of REIs with single-wall nanotubes (SWNTs) wrapped with DNA. From the FRET efficiency of 10% and 7% for Tb and Eu, respectively, the characteristic distance between the REI and SWNT/DNA was obtained as 15.9 ± 1.3 Å, suggesting that the complexes are formed because of Coulomb attraction between the REI and the ionized phosphate groups of the DNA.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Calibration
  • DNA / chemistry*
  • Europium / chemistry*
  • Fluorescence Resonance Energy Transfer*
  • Models, Molecular
  • Molecular Conformation
  • Nanotubes / chemistry*
  • Solutions
  • Terbium / chemistry*
  • Time Factors

Substances

  • Solutions
  • Terbium
  • Europium
  • DNA