An analysis of the influence of protein intrinsic dynamical properties on its thermal unfolding behavior

J Biomol Struct Dyn. 2011 Aug;29(1):105-21. doi: 10.1080/07391102.2011.10507377.

Abstract

The influence of the protein topology-encoded dynamical properties on its thermal unfolding motions was studied in the present work. The intrinsic dynamics of protein topology was obtained by the anisotropic network model (ANM). The ANM has been largely used to investigate protein collective functional motions, but it is not well elucidated if this model can also reveal the preferred large-scale motions during protein unfolding. A small protein barnase is used as a typical case study to explore the relationship between protein topology-encoded dynamics and its unfolding motions. Three thermal unfolding simulations at 500 K were performed for barnase and the entire unfolding trajectories were sampled and partitioned into several windows. For each window, the preferred unfolding motions were investigated by essential dynamics analysis, and then associated with the intrinsic dynamical properties of the starting conformation in this window, which is detected by ANM. The results show that only a few slow normal modes imposed by protein structure are sufficient to give a significant overlap with the preferred unfolding motions. Especially, the large amplitude unfolding movements, which imply that the protein jumps out of a local energy basin, can be well described by a single or several ANM slow modes. Besides the global motions, it is also found that the local residual fluctuations encoded in protein structure are highly correlated with those in the protein unfolding process. Furthermore, we also investigated the relationship between protein intrinsic flexibility and its unfolding events. The results show that the intrinsic flexible regions tend to unfold early. Several early unfolding events can be predicted by analysis of protein structural flexibility. These results imply that protein structure-encoded dynamical properties have significant influences on protein unfolding motions.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anisotropy
  • Computer Simulation
  • Models, Molecular
  • Protein Conformation
  • Protein Unfolding*
  • Proteins / chemistry*
  • Thermodynamics

Substances

  • Proteins