Coherent tunnelling conductance in magnetic tunnel junctions of half-metallic full Heusler alloys with MgO barriers

J Phys Condens Matter. 2007 Sep 12;19(36):365228. doi: 10.1088/0953-8984/19/36/365228. Epub 2007 Aug 24.

Abstract

We have carried out electronic structure and transport calculations for magnetic tunnel junctions (MTJ) composed of MgO and a half-metallic full Heusler alloy Co(2)MnSi on the basis of the density functional theory and the Landauer formula. We find that the density of states of Co atoms at the Co(2)MnSi/MgO(001) interface shifts toward the higher energy side due to the reduced symmetry, leading to a reduction of the spin polarization at the interface. Furthermore, we show that the majority-spin transmittance as a function of the in-plane wavevector [Formula: see text] has a broad peak centred at [Formula: see text] due to the tunnelling from the Δ(1) channel of Co(2)MnSi, while the transmittance from the Δ(5) channel is three orders of magnitude smaller than that of the Δ(1) channel. These results indicate that coherent tunnelling through the Δ(1) band is dominant also in an MTJ with Co(2)MnSi and an MgO barrier, like in Fe/MgO/Fe(001) MTJ and related systems.