First-principles molecular dynamics study of proton transfer mechanism in bovine cytochrome c oxidase

J Phys Condens Matter. 2007 Sep 12;19(36):365220. doi: 10.1088/0953-8984/19/36/365220. Epub 2007 Aug 24.

Abstract

Density functional based first-principles molecular dynamics calculations, performed on a model system extracted from the bovine cytochrome c oxidase, have been performed in an attempt to inspect the proton transfer mechanism across a peptide group. Our model system includes the specific Tyr440-Ser441 peptide group involved in a novel proton transfer path and shows that the Y440-S441 enol peptide group [-C(OH) = N-], which is a structural isomer of a keto form [-CO-NH-], is the product of the deprotonation of an imidic acid [-C(OH)-NH-] occurring in the vicinity of the deprotonated aspartic acid residue. For the subsequent enol-to-keto tautomerization, a direct H(+) transfer path in the Y440-S441 peptide group has been identified, in which the transition state takes a distorted four-membered ring structure.