Verification of the dispersive charge transport in a hydrazone:polycarbonate molecularly doped polymer

J Phys Condens Matter. 2009 Mar 18;21(11):115107. doi: 10.1088/0953-8984/21/11/115107. Epub 2009 Feb 9.

Abstract

We report results of specially planned experiments intended to verify the dispersive character of the charge carrier transport in polycarbonate molecularly doped with hydrazone at 30 wt% loading, using for this purpose samples specifically featuring a well-defined plateau on a linear-linear plot. For this purpose we propose a new variant of the time-of-flight technique which allows easy changing of the generation zone width from about 0.5 µm (surface excitation) through intermediate values to full sample thickness (bulk excitation). To achieve this, we use electron pulses of 3-50 keV energy rather than traditional light pulses provided by lasers. Experimental results corroborated by numerical calculations uniquely prove that carrier transport in this molecularly doped polymer is dispersive, with the dispersion parameter equal to 0.75. Nevertheless, the mobility field dependence follows the famous Poole-Frenkel law.