Relationships between water attenuation coefficients derived from active and passive remote sensing: a case study from two coastal environments

Appl Opt. 2011 Jun 20;50(18):2990-9. doi: 10.1364/AO.50.002990.

Abstract

Relationships between the satellite-derived diffuse attenuation coefficient of downwelling irradiance (K(d)) and airborne-based vertical attenuation of lidar volume backscattering (α) were examined in two coastal environments. At 1.1 km resolution and a wavelength of 532 nm, we found a greater connection between α and K(d) when α was computed below 2 m depth (Spearman rank correlation coefficient up to 0.96), and a larger contribution of K(d) to α with respect to the beam attenuation coefficient as estimated from lidar measurements and K(d) models. Our results suggest that concurrent passive and active optical measurements can be used to estimate total scattering coefficient and backscattering efficiency in waters without optical vertical structure.