Craniux: a LabVIEW-based modular software framework for brain-machine interface research

Comput Intell Neurosci. 2011:2011:363565. doi: 10.1155/2011/363565. Epub 2011 Apr 7.

Abstract

This paper presents "Craniux," an open-access, open-source software framework for brain-machine interface (BMI) research. Developed in LabVIEW, a high-level graphical programming environment, Craniux offers both out-of-the-box functionality and a modular BMI software framework that is easily extendable. Specifically, it allows researchers to take advantage of multiple features inherent to the LabVIEW environment for on-the-fly data visualization, parallel processing, multithreading, and data saving. This paper introduces the basic features and system architecture of Craniux and describes the validation of the system under real-time BMI operation using simulated and real electrocorticographic (ECoG) signals. Our results indicate that Craniux is able to operate consistently in real time, enabling a seamless work flow to achieve brain control of cursor movement. The Craniux software framework is made available to the scientific research community to provide a LabVIEW-based BMI software platform for future BMI research and development.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Algorithms
  • Brain / physiology*
  • Brain Waves / physiology*
  • Electroencephalography
  • Humans
  • Information Storage and Retrieval
  • Numerical Analysis, Computer-Assisted
  • Software Design
  • Software*
  • Time Factors
  • User-Computer Interface*