Thermodynamics of a gas of deconfined bosonic spinons in two dimensions

Phys Rev Lett. 2011 May 20;106(20):207203. doi: 10.1103/PhysRevLett.106.207203. Epub 2011 May 20.

Abstract

We consider the quantum phase transition between a Néel antiferromagnet and a valence-bond solid (VBS) in a two-dimensional system of S = 1/2 spins. Assuming that the excitations of the critical ground state are linearly dispersing deconfined spinons obeying Bose statistics, we derive expressions for the specific heat C and the magnetic susceptibility χ at low temperature T in terms of a correlation length ξ(T). Comparing with quantum Monte Carlo results for the J-Q model, which is a candidate for a deconfined Néel-VBS transition, we obtain an almost perfect consistency between C, χ, and ξ. The corresponding expressions for magnon (triplet) excitations are not internally consistent, however, lending strong support for spinon excitations in the J-Q model.