Volatile composition, emission pattern, and localization of floral scent emission in Mirabilis jalapa (Nyctaginaceae)

Am J Bot. 2005 Jan;92(1):2-12. doi: 10.3732/ajb.92.1.2.

Abstract

We elucidated scent components, daily emission patterns, and the localization of floral scent release of Mirabilis jalapa. Volatiles emitted by the whole plant as well as by detached flowers were investigated using dynamic headspace analysis and gas chromatography/ mass spectrometry. Among several constituents including (Z)-3-hexenyl acetate, β-myrcene, (Z)-ocimene, and benzyl benzoate, the monoterpene (E)-β-ocimene was the major fragrance component. Fragrance release occurred in a time-dependent manner. The emission of volatiles, including (E)-β-ocimene, showed an evening-specific maximum (1700-2000 pm). The emission of (Z)-3-hexenyl acetate reached its maximum 3 h later. Histological (neutral red staining) and morphological studies (electron and light microscopy) of the flower surface and tissues of M. jalapa revealed differences in surface structures and tissue characteristics. The flower could be divided into four main sections, including the tube, the transition zone between tube and limb, a star-shaped center of the limb, and petaloid lobes of the limb. These petaloid lobes are the site of (E)-β-ocimene release. Stomata and trichomes found on the abaxial flower surface were not directly involved in fragrance release. Clear indications of osmophores involved in scent release could not be found. Thus, the results indicate that floral volatiles probably are released by diffuse emission in M. jalapa.