Dihydrogen activation with (t)Bu3P/B(C6F5)3: a chemically competent indirect mechanism via in situ-generated p-(t)Bu2P-C6F4-B(C6F5)2

J Am Chem Soc. 2011 Jul 6;133(26):10026-9. doi: 10.1021/ja203214f. Epub 2011 Jun 13.

Abstract

A chemically competent indirect pathway for the activation of dihydrogen by the nonmetal Lewis acid/Lewis base pair (t)Bu(3)P/B(C(6)F(5))(3) is described. The reaction between (t)Bu(3)P and B(C(6)F(5))(3) produces [(t)Bu(3)PH](+)[FB(C(6)F(5))(3)](-) and the known phosphinoborane p-(t)Bu(2)P-C(6)F(4)-B(C(6)F(5))(2) (1-(t)Bu) with elimination of isobutylene. At 1:1 stoichiometry, 1-(t)Bu is produced rapidly in detectable quantities and can act as a catalyst for the formation of [(t)Bu(3)PH](+)[HB(C(6)F(5))(3)](-) from (t)Bu(3)P and B(C(6)F(5))(3) in the presence of H(2). The extent to which this indirect path competes with the direct path is explored.