Mesoporous TiO2 core-shell spheres composed of nanocrystals with exposed high-energy facets: facile synthesis and formation mechanism

Langmuir. 2011 Jul 5;27(13):8500-8. doi: 10.1021/la201547g. Epub 2011 Jun 7.

Abstract

A facile new method that combines electrospray and hydrothermal treatment is used to prepare mesoporous core-shell TiO(2) spheres with high specific surface areas and high pore volumes. Interestingly, the resulting TiO(2) spheres are composed of anatase TiO(2) nanocrystals with exposed step-like {001} and smooth {010} facets. The percentage of exposed {001} facets can be adjusted by changing the experimental parameters used in the electrospray and hydrothermal treatment processes, such as the contents of poly(N-vinyl-2-pyrrolidone) and acetic acid. The combination of high specific surface area (>100 m(2) g(-1)), high pore volume (>0.30 cm(3) g(-1)), useful pore size (10-15 nm), spherical core-shell structure, and exposed high energy facets makes these TiO(2) spheres an important candidate for use in many photoelectrochemical applications. The formation mechanism of the mesoporous TiO(2) spheres is also studied. The great advantage of this method is that interesting and complicated mesoporous superstructures can be prepared using electrospray technology.