Photoprotection in plants involves a change in lutein 1 binding domain in the major light-harvesting complex of photosystem II

J Biol Chem. 2011 Aug 5;286(31):27247-54. doi: 10.1074/jbc.M111.234617. Epub 2011 Jun 6.

Abstract

Nonphotochemical quenching (NPQ) is the fundamental process by which plants exposed to high light intensities dissipate the potentially harmful excess energy as heat. Recently, it has been shown that efficient energy dissipation can be induced in the major light-harvesting complexes of photosystem II (LHCII) in the absence of protein-protein interactions. Spectroscopic measurements on these samples (LHCII gels) in the quenched state revealed specific alterations in the absorption and circular dichroism bands assigned to neoxanthin and lutein 1 molecules. In this work, we investigate the changes in conformation of the pigments involved in NPQ using resonance Raman spectroscopy. By selective excitation we show that, as well as the twisting of neoxanthin that has been reported previously, the lutein 1 pigment also undergoes a significant change in conformation when LHCII switches to the energy dissipative state. Selective two-photon excitation of carotenoid (Car) dark states (Car S(1)) performed on LHCII gels shows that the extent of electronic interactions between Car S(1) and chlorophyll states correlates linearly with chlorophyll fluorescence quenching, as observed previously for isolated LHCII (aggregated versus trimeric) and whole plants (with versus without NPQ).

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Arabidopsis / metabolism
  • Arabidopsis / physiology*
  • Binding Sites
  • Chromatography, High Pressure Liquid
  • Lutein / metabolism*
  • Photosystem II Protein Complex / metabolism*
  • Spectrum Analysis, Raman

Substances

  • Photosystem II Protein Complex
  • Lutein