Electric conductivity-tunable transparent flexible nanowire-filled polymer composites: orientation control of nanowires in a magnetic field

ACS Appl Mater Interfaces. 2011 Jul;3(7):2341-8. doi: 10.1021/am200260v. Epub 2011 Jun 22.

Abstract

Cobalt compound nanowires were dispersed in a transparent nonconductive polymer film by merely stirring, and the film's transparency and electrical conductivity were examined. This composite film is a unique system in which the average length of the nanowires exceeds the film's thickness. Even in such a system, a percolation threshold existed for the electric conductivity in the direction of the film thickness, and the value was 0.18 vol%. The electric conductivity value changed from ∼1 × 10(-12) S/cm to ∼1 × 10(-3) S/cm when the volume fraction exceeded the threshold. The electric conductivity apparently followed the percolation model until the volume fraction of the nanowires was about 0.45 vol %. The visible light transmission and electric conductivity of the composite film of about 1 vol % nanowires were 92% and 5 × 10(-3) S/cm, respectively. Moreover, the electric conductivity in the direction parallel to the film surface did not depend on the amount of the dispersed nanowires, and its value was about 1 × 10(-14) S/cm. Even in a weak magnetic field of about 100 mT, the nanowires were aligned in a vertical and parallel direction to the film surface, and the electric conductivity of each aligned composite film was 2.0 × 10(-2) S/cm and 2.1 × 10(-12) S/cm. The relation between the average wire length and the electric conductivity was examined, and the effect of the magnetic alignment on that relation was also examined.