Thermodynamics of optoplasmonic heating in fluid-filled gold-nanoparticle-plated capillaries

Langmuir. 2011 Jun 21;27(12):7799-805. doi: 10.1021/la200078j. Epub 2011 May 27.

Abstract

Dynamic and equilibrium thermal behavior of plasmon-heated gold/silica capillary nanocomposite during evaporative cooling by water or butanol is accurately described at centimeter length scales by continuum optoplasmonic thermodynamics for continuous-wave laser irradiation of 15-50 mW. Gold nanoparticles randomly distributed on the capillary via electroless plating exhibited a composite extinction cross section of 66.74 ± 0.72% of the area of the laser spot, more than 2-fold larger than the physical cross-section of the AuNPs. The extinction cross-section of the AuNPs capillary was invariant for incident laser powers of 15-150 mW and was reduced slightly in the presence of butanol and water due to absorption peak-shifting to lower energies. Introducing composite thermal parameters into the optoplasmonic thermodynamic relation extended its ability to predict heat transfer to laser powers of 100 and 150 mW for water and butanol, respectively. Nonlinear behaviors such as exponential thermal profiles caused by limited thermal conductivity and film boiling are identified at higher laser powers and prevent further extension of the relation. Mathematical reduction of temperature and time variables of the mathematical description shows it accounts for all measured thermodynamic effects when the aforementioned nonlinear behaviors are not present. This confirms that extraordinary thermal transport observed in some nanocomposites are absent for AuNP/silica systems in the given ranges, which allows a macroscale, continuum approach to describe thermal transport.