Role of the fish Astyanax aeneus (Characidae) as a keystone nutrient recycler in low-nutrient neotropical streams

Ecology. 2011 Feb;92(2):386-97. doi: 10.1890/10-0081.1.

Abstract

Nutrient recycling by animals is a potentially important biogeochemical process in both terrestrial and aquatic ecosystems. Stoichiometric traits of individual species may result in some taxa playing disproportionately important roles in the recycling of nutrients relative to their biomass, acting as keystone nutrient recyclers. We examined factors controlling the relative contribution of 12 Neotropical fish species to nutrient recycling in four streams spanning a range of phosphorus (P) levels. In high-P conditions (135 microg/L soluble reactive phosphorus, SRP), most species fed on P-enriched diets and P excretion rates were high across species. In low-P conditions (3 microg/L SRP), aquatic food resources were depleted in P, and species with higher body P content showed low rates of P recycling. However, fishes that were subsidized by terrestrial inputs were decoupled from aquatic P availability and therefore excreted P at disproportionately high rates. One of these species, Astyanax aeneus (Characidae), represented 12% of the total population and 18% of the total biomass of the fish assemblage in our focal low-P study stream but had P excretion rates > 10-fold higher than other abundant fishes. As a result, we estimated that P excretion by A. aeneus accounted for 90% of the P recycled by this fish assemblage and also supplied approximately 90% of the stream P demand in this P-limited ecosystem. Nitrogen excretion rates showed little variation among species, and the contribution of a given species to ecosystem N recycling was largely dependent upon the total biomass of that species. Because of the high variability in P excretion rates among fish species, ecosystem-level P recycling could be particularly sensitive to changes in fish community structure in P-limited systems.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Ecosystem*
  • Feeding Behavior / physiology
  • Fishes / physiology*
  • Nitrogen / metabolism
  • Phosphorus
  • Rivers*

Substances

  • Phosphorus
  • Nitrogen