Protein coalitions in a core mammalian biochemical network linked by rapidly evolving proteins

BMC Evol Biol. 2011 May 25:11:142. doi: 10.1186/1471-2148-11-142.

Abstract

Background: Cellular ATP levels are generated by glucose-stimulated mitochondrial metabolism and determine metabolic responses, such as glucose-stimulated insulin secretion (GSIS) from the β-cells of pancreatic islets. We describe an analysis of the evolutionary processes affecting the core enzymes involved in glucose-stimulated insulin secretion in mammals. The proteins involved in this system belong to ancient enzymatic pathways: glycolysis, the TCA cycle and oxidative phosphorylation.

Results: We identify two sets of proteins, or protein coalitions, in this group of 77 enzymes with distinct evolutionary patterns. Members of the glycolysis, TCA cycle, metabolite transport, pyruvate and NADH shuttles have low rates of protein sequence evolution, as inferred from a human-mouse comparison, and relatively high rates of evolutionary gene duplication. Respiratory chain and glutathione pathway proteins evolve faster, exhibiting lower rates of gene duplication. A small number of proteins in the system evolve significantly faster than co-pathway members and may serve as rapidly evolving adapters, linking groups of co-evolving genes.

Conclusions: Our results provide insights into the evolution of the involved proteins. We find evidence for two coalitions of proteins and the role of co-adaptation in protein evolution is identified and could be used in future research within a functional context.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Conserved Sequence
  • Evolution, Molecular
  • Gene Duplication
  • Glucose / metabolism*
  • Glycolysis
  • Humans
  • Insulin / metabolism*
  • Metabolic Networks and Pathways
  • Mice
  • Phylogeny
  • Proteins / genetics*
  • Proteins / metabolism*

Substances

  • Insulin
  • Proteins
  • Glucose