Water-oxidation catalysis by manganese in a geochemical-like cycle

Nat Chem. 2011 Jun;3(6):461-6. doi: 10.1038/nchem.1049. Epub 2011 May 15.

Abstract

Water oxidation in all oxygenic photosynthetic organisms is catalysed by the Mn₄CaO₄ cluster of Photosystem II. This cluster has inspired the development of synthetic manganese catalysts for solar energy production. A photoelectrochemical device, made by impregnating a synthetic tetranuclear-manganese cluster into a Nafion matrix, has been shown to achieve efficient water oxidation catalysis. We report here in situ X-ray absorption spectroscopy and transmission electron microscopy studies that demonstrate that this cluster dissociates into Mn(II) compounds in the Nafion, which are then reoxidized to form dispersed nanoparticles of a disordered Mn(III/IV)-oxide phase. Cycling between the photoreduced product and this mineral-like solid is responsible for the observed photochemical water-oxidation catalysis. The original manganese cluster serves only as a precursor to the catalytically active material. The behaviour of Mn in Nafion therefore parallels its broader biogeochemistry, which is also dominated by cycles of oxidation into solid Mn(III/IV) oxides followed by photoreduction to Mn²⁺.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Catalysis
  • Manganese / chemistry*
  • Microscopy, Electron, Transmission
  • Oxidation-Reduction
  • Spectrum Analysis / methods
  • Water / chemistry*
  • X-Rays

Substances

  • Water
  • Manganese