Small-molecule inhibition of choline catabolism in Pseudomonas aeruginosa and other aerobic choline-catabolizing bacteria

Appl Environ Microbiol. 2011 Jul;77(13):4383-9. doi: 10.1128/AEM.00504-11. Epub 2011 May 20.

Abstract

Choline is abundant in association with eukaryotes and plays roles in osmoprotection, thermoprotection, and membrane biosynthesis in many bacteria. Aerobic catabolism of choline is widespread among soil proteobacteria, particularly those associated with eukaryotes. Catabolism of choline as a carbon, nitrogen, and/or energy source may play important roles in association with eukaryotes, including pathogenesis, symbioses, and nutrient cycling. We sought to generate choline analogues to study bacterial choline catabolism in vitro and in situ. Here we report the characterization of a choline analogue, propargylcholine, which inhibits choline catabolism at the level of Dgc enzyme-catalyzed dimethylglycine demethylation in Pseudomonas aeruginosa. We used genetic analyses and 13C nuclear magnetic resonance to demonstrate that propargylcholine is catabolized to its inhibitory form, propargylmethylglycine. Chemically synthesized propargylmethylglycine was also an inhibitor of growth on choline. Bioinformatic analysis suggests that there are genes encoding DgcA homologues in a variety of proteobacteria. We examined the broader utility of propargylcholine and propargylmethylglycine by assessing growth of other members of the proteobacteria that are known to grow on choline and possess putative DgcA homologues. Propargylcholine showed utility as a growth inhibitor in P. aeruginosa but did not inhibit growth in other proteobacteria tested. In contrast, propargylmethylglycine was able to inhibit choline-dependent growth in all tested proteobacteria, including Pseudomonas mendocina, Pseudomonas fluorescens, Pseudomonas putida, Burkholderia cepacia, Burkholderia ambifaria, and Sinorhizobium meliloti. We predict that chemical inhibitors of choline catabolism will be useful for studying this pathway in clinical and environmental isolates and could be a useful tool to study proteobacterial choline catabolism in situ.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacteria, Aerobic / drug effects*
  • Bacteria, Aerobic / growth & development
  • Bacteria, Aerobic / metabolism
  • Burkholderia / drug effects*
  • Burkholderia / growth & development
  • Burkholderia / metabolism
  • Carbon / metabolism
  • Choline / analogs & derivatives
  • Choline / metabolism*
  • Energy Metabolism / drug effects
  • Enzyme Inhibitors / metabolism*
  • Metabolic Networks and Pathways / drug effects*
  • Nitrogen / metabolism
  • Pseudomonas / drug effects*
  • Pseudomonas / growth & development
  • Pseudomonas / metabolism
  • Sarcosine / analogs & derivatives
  • Sarcosine / antagonists & inhibitors
  • Sinorhizobium meliloti / drug effects*
  • Sinorhizobium meliloti / growth & development
  • Sinorhizobium meliloti / metabolism

Substances

  • Enzyme Inhibitors
  • Carbon
  • dimethylglycine
  • Nitrogen
  • Choline
  • Sarcosine

Associated data

  • RefSeq/ZP_01443608