Microwave-mediated synthesis for improved morphology and pseudocapacitance performance of nickel oxide

ACS Appl Mater Interfaces. 2011 Jun;3(6):2063-73. doi: 10.1021/am200294k. Epub 2011 May 24.

Abstract

Synthetic methods greatly control the structural and functional characteristics of the materials. In this article, porous NiO samples were prepared in conventional-reflux and microwave assisted heating method under homogeneous precipitation conditions. The NiO samples synthesized in conventional reflux method showed flakelike morphology, whereas the sample synthesized in microwave methods showed hierarchical porous ball like surface morphology with uniform ripple-shaped pores. The NiO samples characterized using BET method were found to bear characteristic meso- and macroporosity due to differently crystallized Ni(OH)(2) precursors under various heating conditions. Thermogravimety analysis showed morphology dependent decomposition of Ni(OH)(2) precursors. The microwave synthesized porous NiO sample with unique morphology and pore size distribution showed significantly improved charge storage and electrochemical stability than the flaky NiO sample synthesized by employing conventional reflux method. The cyclic voltammetry measurements on microwave synthesized NiO sample showed considerably high capacitance and better electrochemical reversibility. The charge-discharge measurements made at a discharge current of 2 A/g showed higher rate specific capacitance (370 F/g) for the NiO sample synthesized by microwave method than the sample synthesized by reflux method (101 F/g). The impedance study illustrates lower electronic and ionic resistance of rippled-shaped porous NiO due to its superior surface properties for enhanced electrode-electrolyte contact during the Faradaic redox reactions. It has been further established from the Ragone plot that the microwave synthesized NiO sample shows higher energy and power densities than the reflux synthesized NiO sample. Broadly, this study reveals that microwave-mediated synthesis approach is significantly a better strategy for the synthesis of porous NiO suitable to electrochemical supercapacitor applications.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Electrochemistry / methods*
  • Microwaves*
  • Nickel / chemistry*

Substances

  • Nickel
  • nickel monoxide