An in situ study of the hydriding kinetics of Pd thin films

Phys Chem Chem Phys. 2011 Jun 21;13(23):11412-21. doi: 10.1039/c0cp02773a. Epub 2011 May 13.

Abstract

The hydriding kinetics of Pd thin films has been investigated in detail. The in situ experimental technique used in this work consists of a high resolution curvature measurement setup, which continuously monitors the reflections of multiple laser beams reflecting off a cantilevered sample. After mounting the sample inside a vacuum chamber, a H-containing gas mixture is introduced to instantaneously generate a given hydrogen partial pressure (p(H(2))) inside the chamber. The resulting interaction of hydrogen with the Pd layer then leads to a volume expansion of the thin film system. This induces in turn changes in the sample curvature as a result of internal stresses developing in the Pd film during a hydriding cycle. Based on such in situ curvature data, three different kinetic regimes have been resolved. The first two exhibited a linear increase of the internal stress in the compressive direction with time. A systematic study of the p(H(2))-dependency of the two constant slopes was performed, based on newly derived constitutive kinetic equations. This resulted in the identification of the first linear regime to be limited by absorption and the second one by adsorption. After adsorption equilibrium is reached at the end of the second regime, a third, non-linear kinetic regime, limited by absorption, was found to precede the final hydriding equilibrium. This switch back to absorption-limited kinetics likely occurs due to a coverage dependent change in the adsorption enthalpy of the surface hydrogen. Furthermore, from our in situ experimental data, relevant kinetic and thermodynamic hydriding parameters have been derived. As a result, this study was able to provide a self-consistent quantitative interpretation of the entire Pd room temperature hydriding cycle in the alpha-phase domain.