Micromolding of solvent resistant microfluidic devices

Lab Chip. 2011 Jun 21;11(12):2035-8. doi: 10.1039/c0lc00550a. Epub 2011 May 11.

Abstract

We demonstrate a rapid fabrication procedure for solvent-resistant microfluidic devices based on the perfluoropolyether (PFPE) SIFEL. We carefully modified the poly-dimethylsiloxane (PDMS) micromolding procedure, such that it can still be executed using the standard facilities for PDMS devices. Most importantly, devices with a thin SIFEL layer for the patterned channels and a PDMS support layer on top offered the best of two worlds in terms of chemical and mechanical stability during fabrication and use. Tests revealed that these devices overcome two important drawbacks of PDMS devices: (i) incompatibility with almost all non-aqueous solvents, and (ii) leaching of oligomer into solution. The potential of our device is shown by performing a relevant organic synthesis reaction with aggressive reactants and solvents. PFPE-PDMS devices will greatly expand the application window of micromolded devices.