Ring currents in polycyclic sodium clusters

J Phys Chem A. 2011 Nov 17;115(45):12493-502. doi: 10.1021/jp2020947. Epub 2011 May 10.

Abstract

In the recent work by Khatua et al. (Khatua, S.; Roy, D. R.; Bultinck, P.; Bhattacharjee, M.; Chattaraj, P. K. Phys. Chem. Chem. Phys.2008, 10, 2461-2474) the synthesis and structure of a fac-trioxo molybdenum metalloligand and its sodium complex containing 1D hexagonal chains of sodium ions was reported. In the same paper, the aromaticity of hexagonal Na clusters was quantified by means of the nucleus-independent chemical shift and electronic multicenter indices. It was shown that the aromaticity of hexagonal Na-clusters is of the same order as the aromaticity of analogous benzenoid hydrocarbons. In the present study current density maps are used to rationalize the aromaticity of polycyclic Na clusters. It is shown that although polycyclic Na systems sustain a diatropic ring current, the induced current density is several times weaker than in analogous benzenoid hydrocarbons. A detailed analysis indicates that the current density in hexagonal Na systems is almost completely determined by four HOMO σ electrons.