TiO2 -enriched polymeric powder coatings support human mesenchymal cell spreading and osteogenic differentiation

Biomed Mater. 2011 Jun;6(3):035009. doi: 10.1088/1748-6041/6/3/035009. Epub 2011 May 10.

Abstract

Novel polymeric powder coatings (PPC) were prepared by ultrafine powder coating technology and shown to support human mesenchymal cell attachment and growth. PPC surfaces enriched with nano-TiO(2) (nTiO(2)) showed enhanced cellular responses, and were compared to commercially pure titanium (cpTi). After cell attachment and growth, osteogenic differentiation and bone matrix formation ensures osseointegration for implantable biomaterials. Therefore, the objective of this study was to determine if mesenchymal cells grown on PPC could undergo osteogenic differentiation by inducing Runx2 and bone matrix proteins, and then initiate mineralization. Atomic force microscopy revealed intricate three-dimensional micro-topographies, and the measures of nano-roughness and porosity were similar for all PPC surfaces. Scanning electron microscopy showed that the cells attached and spread out over all of the surfaces. After 1 week in osteogenic media, RT-PCR analysis showed the induction of Runx2, the up-regulation of type I collagen, and the initial detection of alkaline phosphatase and bone sialoprotein. After 4 weeks, Alizarin Red staining showed mineral deposition. However, cell spreading and osteogenic differentiation were significantly (P < 0.05) higher on the cpTi controls than on the PPC surfaces. Furthermore, spreading and differentiation were consistently higher on the titanium-enriched PPC-2, -3 and -4 than on the titanium-free PPC-1. Therefore, despite the presence of complex micro-topographies and nano-features, titanium-enrichment enhanced the cellular response, and pure titanium still provided the best substrate. These findings confirm the cytocompatibility of these novel polymeric coatings and suggest that titanium-enrichment and nTiO(2) additives may enhance their performance.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alkaline Phosphatase / metabolism
  • Biocompatible Materials / chemistry
  • Cell Differentiation
  • Cell Proliferation
  • Collagen / metabolism
  • Humans
  • Integrin-Binding Sialoprotein / chemistry
  • Mesenchymal Stem Cells / cytology*
  • Microscopy, Atomic Force / methods
  • Osteocytes / cytology*
  • Osteogenesis
  • Polymers / chemistry
  • Powders
  • Reverse Transcriptase Polymerase Chain Reaction
  • Surface Properties
  • Titanium / chemistry*

Substances

  • Biocompatible Materials
  • Integrin-Binding Sialoprotein
  • Polymers
  • Powders
  • titanium dioxide
  • Collagen
  • Titanium
  • Alkaline Phosphatase