Mixing enhancement for high viscous fluids in a microfluidic chamber

Lab Chip. 2011 Jun 21;11(12):2081-7. doi: 10.1039/c0lc00695e. Epub 2011 May 5.

Abstract

Due to small channel dimensions and laminar flows, mixing in microfluidic systems is always a challenging task, especially for high viscous fluids. Here we report a method of enhancing microfluidic mixing for high viscous fluids using acoustically induced bubbles. The bubbles can be generated in an acoustically profiled microfluidic structure by using a piezoelectric disk activated at a working frequency range between 1.5 kHz and 2 kHz. The mixing enhancement is achieved through interactions between the oscillating bubbles and fluids. Both experimental studies and numerical simulations are conducted. In the experiments, DI water-glycerol mixture solutions with various viscosities were used. The results, based on the mixing efficiency calculated from experimentally acquired fluorescent images, showed that good mixing can occur in the DI water-glycerol solutions with their maximum viscosity up to 44.75 mPa s, which to our best knowledge is the highest viscosity of fluids in microfluidic mixing experiments. To explain the mechanisms of bubble generation, the numerical simulation results show that, corresponding to the actuations at the working frequency range used in the experiment, there exists a low pressure region where the pressure is lower than the water vapor pressure in the DI water-glycerol solutions, resulting in the generation of bubbles.