Mesoporous silica nanoparticles for bioadsorption, enzyme immobilisation, and delivery carriers

Nanoscale. 2011 Jul;3(7):2801-18. doi: 10.1039/c1nr10224a. Epub 2011 May 5.

Abstract

Mesoporous silica nanoparticles (MSNs) provide a non-invasive and biocompatible delivery platform for a broad range of applications in therapeutics, pharmaceuticals and diagnosis. The creation of smart, stimuli-responsive systems that respond to subtle changes in the local cellular environment are likely to yield long term solutions to many of the current drug/gene/DNA/RNA delivery problems. In addition, MSNs have proven to be promising supports for enzyme immobilisation, enabling the enzymes to retain their activity, affording them greater potential for wide applications in biocatalysis and energy. This review provides a comprehensive summary of the advances made in the last decade and a future outlook on possible applications of MSNs as nanocontainers for storage and delivery of biomolecules. We discuss some of the important factors affecting the adsorption and release of biomolecules in MSNs and review of the cytotoxicity aspects of such nanomaterials. The review also highlights some promising work on enzyme immobilisation using mesoporous silica nanoparticles.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Adsorption
  • Drug Carriers / chemistry
  • Enzymes, Immobilized / chemistry
  • Enzymes, Immobilized / metabolism
  • Humans
  • Nanoparticles / chemistry*
  • Nanoparticles / toxicity
  • Nanoparticles / ultrastructure
  • Pharmaceutical Preparations / chemistry
  • Polymers / chemistry
  • Porosity
  • Silicon Dioxide / chemistry*

Substances

  • Drug Carriers
  • Enzymes, Immobilized
  • Pharmaceutical Preparations
  • Polymers
  • Silicon Dioxide