The structure of the PERK kinase domain suggests the mechanism for its activation

Acta Crystallogr D Biol Crystallogr. 2011 May;67(Pt 5):423-8. doi: 10.1107/S0907444911006445. Epub 2011 Apr 13.

Abstract

The endoplasmic reticulum (ER) unfolded protein response (UPR) is comprised of several intracellular signaling pathways that alleviate ER stress. The ER-localized transmembrane kinase PERK is one of three major ER stress transducers. Oligomerization of PERK's N-terminal ER luminal domain by ER stress promotes PERK trans-autophosphorylation of the C-terminal cytoplasmic kinase domain at multiple residues including Thr980 on the kinase activation loop. Activated PERK phosphorylates Ser51 of the α-subunit of translation initiation factor 2 (eIF2α), which inhibits initiation of protein synthesis and reduces the load of unfolded proteins entering the ER. The crystal structure of PERK's kinase domain has been determined to 2.8 Å resolution. The structure resembles the back-to-back dimer observed in the related eIF2α kinase PKR. Phosphorylation of Thr980 stabilizes both the activation loop and helix αG in the C-terminal lobe, preparing the latter for eIF2α binding. The structure suggests conservation in the mode of activation of eIF2α kinases and is consistent with a `line-up' model for PERK activation triggered by oligomerization of its luminal domain.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Crystallography, X-Ray
  • Enzyme Activation
  • Mice
  • Models, Molecular
  • Phosphorylation
  • Protein Structure, Tertiary
  • Signal Transduction
  • Unfolded Protein Response
  • eIF-2 Kinase / chemistry*
  • eIF-2 Kinase / metabolism*

Substances

  • PERK kinase
  • eIF-2 Kinase

Associated data

  • PDB/3QD2