Characterization of secondary amide peptide bond isomerization: thermodynamics and kinetics from 2D NMR spectroscopy

Biopolymers. 2011 Nov;95(11):755-62. doi: 10.1002/bip.21642. Epub 2011 May 2.

Abstract

Secondary amide cis peptide bonds are of even lower abundance than the cis tertiary amide bonds of prolines, yet they are of biochemical importance. Using 2D NMR exchange spectroscopy (EXSY) we investigated the formation of cis peptide bonds in several oligopeptides: Ac-G-G-G-NH(2) , Ac-I-G-G-NH(2) , Ac-I-G-G-N-NH(2) and its cyclic form: I-G-G-N in dimethylsulfoxide (DMSO). From the NMR studies, using the amide protons as monitors, an occurrence of 0.13-0.23% of cis bonds was obtained at 296 K. The rate constants for the trans to cis conversion determined from 2D EXSY spectroscopy were 4-9 × 10(-3) s(-1) . Multiple minor conformations were detected for most peptide bonds. From their thermodynamic and kinetic properties the cis isomers are distinguished from minor trans isomers that appear because of an adjacent cis peptide bond. Solvent and sequence effects were investigated utilizing N-methylacetamide (NMA) and various peptides, which revealed a unique enthalpy profile in DMSO. The cyclization of a tetrapeptide resulted in greatly lowered cis populations and slower isomerization rates compared to its linear counterpart, further highlighting the impact of structural constraints.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amides / chemistry*
  • Isomerism
  • Kinetics
  • Nuclear Magnetic Resonance, Biomolecular
  • Peptides / chemistry*
  • Quantum Theory
  • Thermodynamics

Substances

  • Amides
  • Peptides