Making and breaking synapses through local mRNA regulation

Curr Opin Genet Dev. 2011 Aug;21(4):414-21. doi: 10.1016/j.gde.2011.04.002. Epub 2011 Apr 27.

Abstract

Neurons are exquisitely polarized cells that extend intricate axonal and dendritic arbors. Developmental cues guide axons and dendrites into circuits by inducing rapid changes in local protein expression and cytoskeletal structure. Neurons can transduce these signals through local mRNA regulation. Here, we review the latest insights regarding post-transcriptional control of gene expression through mRNA transport and local protein synthesis in developing neurons. We focus on local mRNA regulation during axon growth and guidance, dendrite morphogenesis, and synapse formation and refinement. Dysregulated mRNA transport and translation in neurological disorders are also discussed. The collection of molecules and mechanisms reviewed includes sequence-specific RNA binding proteins, microtubule motors and adaptors, microRNAs, translation initiation factors, and the receptor-mediated signaling that modulates these molecules.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Gene Expression Regulation, Developmental*
  • Neurons / metabolism*
  • Neurons / physiology
  • RNA Processing, Post-Transcriptional
  • RNA, Messenger / genetics*
  • RNA, Messenger / metabolism*
  • Regulatory Sequences, Ribonucleic Acid
  • Synapses / metabolism*

Substances

  • RNA, Messenger
  • Regulatory Sequences, Ribonucleic Acid