Modeling reaction pathways of low energy particle deposition on polymer surfaces via first principle calculations

J Phys Chem A. 2011 May 19;115(19):4976-87. doi: 10.1021/jp111869t. Epub 2011 Apr 28.

Abstract

The chemical processes that lead to polystyrene surface modification via low energy deposition of C(2)H(+), C(2)F(+), CH(2), CH(2)(+), and H(+) radicals and ions are examined using first principles calculations. Specifically, the reaction mechanisms responsible for products identified in classical molecular dynamics with reactive empirical bond-order potentials are examined using density functional theory. In addition, these calculations consider how the presence of charges on the incident particles changes the result for the CH(2) system through the comparison of barriers, transition states, and final products for CH(2) and CH(2)(+). The structures of the reaction species and energy barriers are determined using the B3LYP hybrid functional. Finally, CCSD/6-31G(d,p) single point energy calculations are carried out to obtain optimized energy barriers. The results indicate that the large variety of reactions occurring on the polystyrene surface are a consequence of complex interactions between the substrate and the deposited particles, which can easily be identified and characterized using advanced computational methodologies, such as first principle calculations.