Manganese clusters derived from a 2,6-diacetylpyridine dioximato ligand: structure and magnetic study

Dalton Trans. 2010 May 28;39(20):4817-25. doi: 10.1039/b924977j.

Abstract

Reactions of 2,6-diacetylpyridine dioxime (dapdoH₂) with Mn(NO₃)₂ or Mn(SO₃CF₃)₂ under a variety of conditions or co-ligands yield compounds with the formula [Mn₆O₂(OMe)₂(dapdo)₂(dapdoH)₄](X)₂ in which X = NO₃⁻ (1) or SO₃CF₃⁻ (2), [Mn₈O₂(dapdo)₆(NO₃)₂]·H₂O (3) and [Mn(dapdoH₂)(N₃)₂](n) (4). Compounds 1, 3 and 4 were structurally characterized and equivalent structures for 1 and 2 were inferred from spectroscopic and analytical results. Compounds 1 and 2 consist of hexanuclear Mn₂(II)Mn₄(III) complexes whereas 3 consists of an octanuclear Mn₆(II)Mn₂(III) cluster in which the manganese atoms exhibit a rare bicapped elongated octahedral topology. Compound 4 consists of a 1D system bridged by double end-on azido ligands. Variable temperature magnetic studies were performed between 2-300 K, confirming the ground state S = 5 for 1 and 2, S = 0 for 3 and ferromagnetic response for 4.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Coordination Complexes / chemical synthesis
  • Coordination Complexes / chemistry
  • Crystallography, X-Ray
  • Electrochemical Techniques
  • Ligands
  • Magnetics*
  • Manganese / chemistry*
  • Molecular Conformation
  • Oximes / chemistry*
  • Pyridines / chemistry*

Substances

  • Coordination Complexes
  • Ligands
  • Oximes
  • Pyridines
  • Manganese
  • pyridine