Synthesis, structure, aggregation-induced emission, self-assembly, and electron mobility of 2,5-bis(triphenylsilylethynyl)-3,4-diphenylsiloles

Chemistry. 2011 May 16;17(21):5998-6008. doi: 10.1002/chem.201003382. Epub 2011 Apr 13.

Abstract

2,5-Bis(triphenylsilylethynyl)-3,4-diphenylsiloles with different 1,1-substituents [XYSi(CPh)(2) (C-C≡C-SiPh(3))(2)] (Ph=phenyl) were synthesized in high yields by the Sonogashira coupling of 2,5-dibromo-3,4-diphenylsiloles with triphenylsilylacetylene, and two of these were characterized crystallographically. Crystal structures and theoretical calculations showed that the new silole molecules had higher conjugation than 2,5-diarylsiloles. They possessed low HOMO and LUMO energy levels due to the electron-withdrawing effect of the triphenylsilylethynyl groups. Cyclic voltammetry analysis revealed low electron affinities, which were comparable to those of perfluoroarylsiloles. B3LYP/6-31* calculations demonstrated that the new siloles possessed large reorganization energies for electron and hole transfers and high electron mobilities. A mobility of up to 1.2×10(-5) cm(2) V(-1) s(-1) was obtained by the transient electroluminescence method, which was about fivefold higher than that of tris(8-hydroxyquinolinato)aluminum, a widely used electron-transport material, under the same conditions. All of the silole molecules possessed high thermal stability. Although, their solutions were weakly emissive, their nanoparticle suspensions and thin films emitted intense blue-green light upon photoexcitation, demonstrating a novel feature of aggregation-induced emission (AIE). Polarized emissions were observed in the silole crystals. The addition of solvents, which did not dissolve the silole molecules, into silole-containing solutions caused self-assembly of the molecules, which produced macroscopic fibrils with strong light emissions.