Novel passive co-treatment of acid mine drainage and municipal wastewater

J Environ Qual. 2011 Jan-Feb;40(1):206-13. doi: 10.2134/jeq2010.0176.

Abstract

A laboratory-scale, four-stage continuous-flow reactor system was constructed to test the viability of high-strength acid mine drainage (AMD) and municipal wastewater (MWW) passive co-treatment. Synthetic AMD of pH 2.6 and acidity of 1870 mg L(-1) as CaCO3 equivalent containing a mean 46, 0.25, 2.0, 290, 55, 1.2, and 390 mg L(-1) of Al, As, Cd, Fe, Mn, Pb, and Zn, respectively, was added at a 1:2 ratio with raw MWW from the City of Norman, OK, to the system which had a total residence time of 6.6 d. During the 135-d experiment, dissolved Al, As, Cd, Fe, Mn, Pb, and Zn concentrations were consistently decreased by 99.8, 87.8, 97.7, 99.8, 13.9, 87.9, and 73.4%, respectively, pH increased to 6.79, and net acidic influent was converted to net alkaline effluent. At a wasting rate of 0.69% of total influent flow, the system produced sludge with total Al, As, Cd, Cr, Cu, Fe, Pb, and Zn concentrations at least an order of magnitude greater than the influent mix, which presents a metal reclamation opportunity. Results indicate that AMD and MWW passive co-treatment is a viable approach to use wastes as resources to improve water quality with minimal use of fossil fuels and refined materials.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Acids
  • Cities*
  • Industrial Waste*
  • Mining*
  • Waste Disposal, Fluid / methods*
  • Water Pollutants, Chemical / chemistry*
  • Water Purification / methods

Substances

  • Acids
  • Industrial Waste
  • Water Pollutants, Chemical