Brain circuits mediating baroreflex bradycardia inhibition in rats: an anatomical and functional link between the cuneiform nucleus and the periaqueductal grey

J Physiol. 2011 Apr 15;589(Pt 8):2079-91. doi: 10.1113/jphysiol.2010.203737. Epub 2011 Feb 21.

Abstract

Defence responses triggered experimentally in rats by stimulation of the dorsomedial nucleus of the hypothalamus (DMH) and the dorsolateral periaqueductal grey matter (PAG) inhibit the cardiac baroreflex response (i.e. bradycardia). It has also been proposed that the midbrain cuneiform nucleus (CnF) is involved in active responses. Our aim was to identify the neurocircuitry involved in defence-induced baroreflex inhibition, with a particular focus on the link between DMH, CnF and dorsolateral PAG. Microinjection of the anterograde tracer Phaseolus vulgaris leucoaggutinin into the CnF revealed a dense projection to the dorsolateral PAG. Moreover, activation of neurons in the CnF induced increased expression of Fos protein in the dorsolateral PAG. Inhibition of neurons of the CnF or dorsolateral PAG prevented the inhibition of baroreflex bradycardia induced by DMH or CnF stimulation, respectively. These results provide a detailed description of the brain circuitry underlying acute baroreflex modulation by neurons of the DMH. Our data have shown for the first time that the CnF plays a key role in defence reaction-associated cardiovascular changes; its stimulation, from the DMH, activates the dorsolateral PAG, which, in turn, inhibits baroreflex bradycardia.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Analysis of Variance
  • Animals
  • Baroreflex* / drug effects
  • Bradycardia / metabolism
  • Bradycardia / physiopathology
  • Bradycardia / prevention & control*
  • Cardiovascular Agents / administration & dosage
  • Defense Mechanisms
  • Feedback, Physiological
  • Heart Rate* / drug effects
  • Male
  • Mediodorsal Thalamic Nucleus / physiopathology
  • Mesencephalon / drug effects
  • Mesencephalon / metabolism
  • Mesencephalon / physiopathology*
  • Microinjections
  • Neural Inhibition* / drug effects
  • Neural Pathways / drug effects
  • Neural Pathways / metabolism
  • Neural Pathways / physiopathology*
  • Neuroanatomical Tract-Tracing Techniques
  • Neuronal Tract-Tracers / administration & dosage
  • Neurotransmitter Agents / administration & dosage
  • Periaqueductal Gray / drug effects
  • Periaqueductal Gray / metabolism
  • Periaqueductal Gray / physiopathology*
  • Phytohemagglutinins / administration & dosage
  • Proto-Oncogene Proteins c-fos / metabolism
  • Rats
  • Rats, Sprague-Dawley

Substances

  • Cardiovascular Agents
  • Neuronal Tract-Tracers
  • Neurotransmitter Agents
  • Phytohemagglutinins
  • Proto-Oncogene Proteins c-fos
  • leukoagglutinins, plants