ROS and redox signalling in the response of plants to abiotic stress

Plant Cell Environ. 2012 Feb;35(2):259-70. doi: 10.1111/j.1365-3040.2011.02336.x. Epub 2011 Jun 20.

Abstract

The redox state of the chloroplast and mitochondria, the two main powerhouses of photosynthesizing eukaryotes, is maintained by a delicate balance between energy production and consumption, and affected by the need to avoid increased production of reactive oxygen species (ROS). These demands are especially critical during exposure to extreme environmental conditions, such as high light (HL) intensity, heat, drought or a combination of different environmental stresses. Under these conditions, ROS and redox cues, generated in the chloroplast and mitochondria, are essential for maintaining normal energy and metabolic fluxes, optimizing different cell functions, activating acclimation responses through retrograde signalling, and controlling whole-plant systemic signalling pathways. Regulation of the multiple redox and ROS signals in plants requires a high degree of coordination and balance between signalling and metabolic pathways in different cellular compartments. In this review, we provide an update on ROS and redox signalling in the context of abiotic stress responses, while addressing their role in retrograde regulation, systemic acquired acclimation and cellular coordination in plants.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Acclimatization / physiology
  • Chloroplasts / metabolism
  • Mitochondria / metabolism
  • Oxidation-Reduction
  • Plant Physiological Phenomena
  • Plants / metabolism*
  • Reactive Oxygen Species / metabolism*
  • Signal Transduction / physiology*
  • Stress, Physiological / physiology*

Substances

  • Reactive Oxygen Species