The acute inflammatory response in trauma / hemorrhage and traumatic brain injury: current state and emerging prospects

Libyan J Med. 2009 Sep 1;4(3):97-103. doi: 10.4176/090325.

Abstract

Traumatic injury/hemorrhagic shock (T/HS) elicits an acute inflammatory response that may result in death. Inflammation describes a coordinated series of molecular, cellular, tissue, organ, and systemic responses that drive the pathology of various diseases including T/HS and traumatic brain injury (TBI). Inflammation is a finely tuned, dynamic, highly-regulated process that is not inherently detrimental, but rather required for immune surveillance, optimal post-injury tissue repair, and regeneration. The inflammatory response is driven by cytokines and chemokines and is partially propagated by damaged tissue-derived products (Damage-associated Molecular Patterns; DAMP's). DAMPs perpetuate inflammation through the release of pro-inflammatory cytokines, but may also inhibit anti-inflammatory cytokines. Various animal models of T/HS in mice, rats, pigs, dogs, and non-human primates have been utilized in an attempt to move from bench to bedside. Novel approaches, including those from the field of systems biology, may yield therapeutic breakthroughs in T/HS and TBI in the near future.

Keywords: Hemorrhagic Shock; Inflammation; Systems Biology; Trauma; Traumatic Brain Injury.