Necklace-shaped Au-Ag nanoalloys: laser-assisted synthesis and nonlinear optical properties

Nanotechnology. 2011 Jun 10;22(23):235703. doi: 10.1088/0957-4484/22/23/235703. Epub 2011 Apr 12.

Abstract

Here in this paper, necklace-shaped Au-Ag nanoalloys (NAs) have been synthesized by a laser-based approach. A chain of Ag nanoparticles (NPs), which were joined together with Au junctions, was formed upon copper vapor laser (CVL) irradiation of a colloidal mixture of Ag and Au NPs; while the corresponding NPs were separately provided by laser ablation of gold and silver targets in deionized water by a 1064 nm Q-switched Nd:YAG laser. Dependence of the NAs development process on the CVL irradiation time in three distinct stages of as-mixed, nucleation and complete formation has been systematically studied by UV-vis optical absorption spectroscopy analysis as well as by transmission electron microscopy (TEM), which was exploited to visually confirm the NAs evolution through the process. Furthermore, the x-ray photoelectron spectroscopy (XPS) technique was accurately employed to determine the synthesized alloy content. On the other hand, using the open-and closed-aperture Z-scan technique, the nonlinear absorption (NLA) as well as nonlinear refraction (NLR) changes in Au-Ag NAs were investigated through their formation. The deduced results from the nonlinear optical properties of the colloidal NAs in the mentioned stages were interpreted considering the spectroscopic and microscopic observations. The total change of individual Au and Ag NPs saturable absorption (SA) into the reverse saturable absorption (RSA) behavior was concluded through the evolution into Au-Ag NAs.