Achievement of longitudinally polarized focusing with long focal depth by amplitude modulation

Opt Lett. 2011 Apr 1;36(7):1185-7. doi: 10.1364/OL.36.001185.

Abstract

The longitudinal component of a focused beam is split into two parts along the optical axis to obtain a longitudinally polarized long focal depth using amplitude filtering based on Euler transformation and a radially polarized Bessel-Gaussian beam. Numerical results indicate that long focal depth and FWHM can be easily achieved with 9λ and 0.8λ, respectively. A radially polarized beam can be converted into a longitudinally polarized beam with a conversion efficiency of 51.0%. It can therefore be believed that the proposed scheme can be widely used to generate a longitudinally polarized beam for particle acceleration, laser cutting, and optical trapping.