The 5-HT(1) receptors inhibiting the rat vasodepressor sensory CGRPergic outflow: further involvement of 5-HT(1F), but not 5-HT(1A) or 5-HT(1D), subtypes

Eur J Pharmacol. 2011 Jun 1;659(2-3):233-43. doi: 10.1016/j.ejphar.2011.03.035. Epub 2011 Apr 4.

Abstract

We have previously shown that 5-HT(1B) receptors inhibit prejunctionally the rat vasodepressor CGRPergic sensory outflow. Since 5-HT(1) receptors comprise 5-HT(1A), 5-HT(1B), 5-HT(1D) and 5-HT(1F) functional subtypes, this study has further investigated the role of 5-HT(1A), 5-HT(1D) and 5-HT(1F) receptor subtypes in the inhibition of the above vasodepressor sensory outflow. Pithed rats were pretreated with i.v. continuous infusions of hexamethonium and methoxamine, followed by 5-HT(1) receptor agonists. Then electrical spinal stimulation (T(9)-T(12)) or i.v. bolus injections of exogenous α-CGRP produced frequency-dependent or dose-dependent vasodepressor responses. The electrically-induced vasodepressor responses remained unchanged during infusions of the 5-HT(1A) receptor agonists 8-OH-DPAT and NN-DP-5-CT. In contrast, these responses were inhibited by the agonists sumatriptan (5-HT(1A/1B/1D/1F)), indorenate (5-HT(1A)), PNU-142633 (5-HT(1D)) or LY344864 (5-HT(1F)), which did not affect the vasodepressor responses to exogenous CGRP (implying a prejunctional sensory-inhibition). When analysing the effects of antagonists: (i) 310 μg/kg (but not 100 μg/kg) GR127935 (5-HT(1A/1B/1D/1F)) abolished the inhibition to sumatriptan, indorenate, PNU-142633 or LY344864; (ii) 310 μg/kg SB224289 (5-HT(1B)) or BRL15572 (5-HT(1D)) failed to block the inhibition to sumatriptan or PNU-142633, whereas SB224289+BRL15572 partly blocked the inhibition to sumatriptan; and (iii) 10 μg/kg WAY100635 (5-HT(1A)) failed to block the inhibition to indorenate. These results suggest that 5-HT(1F), but not 5-HT(1A) or 5-HT(1D), receptor subtypes inhibit the vasodepressor sensory CGRPergic outflow although, admittedly, no selective 5-HT(1F) receptor agonist is available yet. The pharmacological profile of these receptors resembles that shown in rat dorsal root ganglia by molecular biology techniques.

MeSH terms

  • Animals
  • Calcitonin Gene-Related Peptide / metabolism*
  • Calcitonin Gene-Related Peptide / pharmacology
  • Electric Stimulation
  • Hemodynamics / drug effects
  • Ligands
  • Male
  • Rats
  • Rats, Wistar
  • Receptor, Serotonin, 5-HT1A / metabolism
  • Receptor, Serotonin, 5-HT1D / metabolism
  • Receptor, Serotonin, 5-HT1F
  • Receptors, Serotonin / metabolism
  • Receptors, Serotonin, 5-HT1 / metabolism*
  • Serotonin 5-HT1 Receptor Agonists / administration & dosage
  • Serotonin 5-HT1 Receptor Agonists / pharmacology
  • Serotonin 5-HT1 Receptor Antagonists / pharmacology
  • Vasodilation / drug effects*

Substances

  • Ligands
  • Receptor, Serotonin, 5-HT1D
  • Receptors, Serotonin
  • Receptors, Serotonin, 5-HT1
  • Serotonin 5-HT1 Receptor Agonists
  • Serotonin 5-HT1 Receptor Antagonists
  • Receptor, Serotonin, 5-HT1A
  • Calcitonin Gene-Related Peptide