Long-term γ-radiolysis kinetics of NO3(-) and NO2(-) solutions

J Phys Chem A. 2011 May 5;115(17):4270-8. doi: 10.1021/jp200262c. Epub 2011 Apr 6.

Abstract

Radiolysis kinetics in NO(3)(-) and NO(2)(-) solutions during γ-irradiation were studied at an absorbed dose rate of 2.1 Gy·s(-1) at room temperature. Air- or argon-saturated nitrate or nitrite solutions at pH 6.0 and 10.6 were irradiated, and the aqueous concentrations of molecular water decomposition products, H(2) and H(2)O(2), and the variation in the concentrations of NO(3)(-) and NO(2)(-) were measured as a function of irradiation time. The experimental data were compared with computer simulations using a comprehensive radiolysis kinetic model to aid in interpretation of the experimental results. The effect of nitrate and nitrite, present at concentrations below 10(-3) M, on water radiolysis processes occurs through reactions with the radical species generated by water radiolysis, (•)e(aq)(-), (•)O(2)(-), and (•)OH. The changes in H(2) and H(2)O(2) concentrations observed in the presence of nitrate and nitrite under a variety of conditions can be explained by a reduction in the radical concentrations. The kinetic analysis shows that the main loss pathway for H(2) is the reaction with (•)OH and the main loss pathways for H(2)O(2) are reactions with (•)e(aq)(-) and (•)OH. Nitrate and nitrite compete for the radicals leading to an increase in the concentrations of H(2) and H(2)O(2). Post-irradiation measurements of H(2), H(2)O(2), NO(2)(-) and NO(3)(-) concentrations can be used to calculate the radical concentrations and provide information on the redox conditions of the irradiated aqueous solutions.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Gamma Rays*
  • Hydrogen-Ion Concentration
  • Kinetics
  • Nitrates / chemistry*
  • Nitrites / chemistry*
  • Solutions

Substances

  • Nitrates
  • Nitrites
  • Solutions