Self-assembled mesoporous hierarchical-like In2S3 hollow microspheres composed of nanofibers and nanosheets and their photocatalytic activity

Langmuir. 2011 May 3;27(9):5534-41. doi: 10.1021/la104780d. Epub 2011 Apr 5.

Abstract

Novel template-free hierarchical-like In(2)S(3) hollow microspheres were synthesized using thiosemicarbazide (NH(2)NHCSNH(2)) as both a sulfur source and a capping ligand in a ethanol/water system. In this study, we demonstrate that several process parameters, such as the reaction time and precursor ratio, strongly influence the morphology of the final product. The In(NO(3))(3)/thiosemicarbazide ratios were found to effectively play crucial roles in the morphologies of the hierarchical-like In(2)S(3) hollow microsphere nanostructure. With the ratios increasing from two to four, the In(2)S(3) crystals exhibited almost spherical morphologies. The synthesized products have been characterized by a variety of methods, including X-ray powder diffraction (XRD), Raman spectroscopy, field-emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), energy-dispersive X-ray (EDX) analysis, X-ray photoelectron spectroscopy (XPS), and ultraviolet-visible diffused reflectance spectroscopy (UV-vis DRS). XRD analysis confirmed the tetragonal structure of the In(2)S(3) hollow microspheres. The products show complex hierarchical structures assembled from nanoscale building blocks. The morphology evolution can be realized on both outside (surface) and inside (hollow cavity) the microsphere. The surface area analysis showed that the porous In(2)S(3) possesses a specific surface area of 108 m(2)/g and uniform distribution of pore sizes corresponding to the size of pores resulting from the self-assembled structures with flakes. The optical properties of In(2)S(3) were also investigated by UV-vis DRS, which indicated that our In(2)S(3) microsphere samples possess a band gap of ∼1.96 eV. Furthermore, the photocatalytic activity studies revealed that the synthesized In(2)S(3) hollow microspheres exhibit an excellent photocatalytic performance in rapidly degrading aqueous methylene blue dye solution under visible light irradiation. These results suggest that In(2)S(3) hollow microspheres will be an interesting candidate for photocatalytic detoxification studies under visible light radiation.