Characterization of atmospheric aerosols in the city of São Paulo, Brazil: comparisons between polluted and unpolluted periods

Environ Monit Assess. 2012 Jan;184(2):969-84. doi: 10.1007/s10661-011-2013-y. Epub 2011 Apr 5.

Abstract

The objective of this study was to determine the size and composition of atmospheric aerosols in the downtown area of the city of São Paulo, Brazil, for a polluted and an unpolluted period. Aerosols were sampled with a portable air sampler (PAS), Micro-Orifice Uniform Deposit Impactor (MOUDI), and Scanning Mobility Particle Sizer. At the study site, air quality is poor, especially during the winter, high concentrations of pollutants being emitted primarily by the light- and heavy-duty vehicle fleet. We analyzed mass, black carbon (BC), Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sn, Zr, and Pb. During the polluted period, diurnal PM(10) was higher than nocturnal PM(10), whereas the inverse was true during the unpolluted period. The FPM was rich in BC, S, and Pb, whereas CPM was rich in Al, Si, Ca, Ti, and Fe. Mass balance was performed by category: ammonium sulfate, sodium chloride, crustal material, BC, and other. The PAS-determined FPM was mainly BC. The MOUDI-determined FPM crustal material explained more mass than did ammonium sulfate and BC during the polluted period, whereas ammonium sulfate had the largest mass during the unpolluted period. Crustal material was the major CPM component, followed by ammonium sulfate and BC. During the unpolluted period, FPM concentrations were lower, whereas those of ammonium sulfate were relatively higher, especially at night, and particle number was inversely proportional to particle size. Aerosol growth was more intense during the polluted period.

Publication types

  • Comparative Study

MeSH terms

  • Aerosols / analysis*
  • Air Pollutants / analysis*
  • Air Pollution / analysis*
  • Atmosphere / chemistry*
  • Brazil
  • Cities / statistics & numerical data
  • Environmental Monitoring*

Substances

  • Aerosols
  • Air Pollutants