Design of an in-line, digital holographic imaging system for airborne measurement of clouds

Appl Opt. 2011 Apr 1;50(10):1405-12. doi: 10.1364/AO.50.001405.

Abstract

We discuss the design and performance of an airborne (underwing) in-line digital holographic imaging system developed for characterizing atmospheric cloud water droplets and ice particles in situ. The airborne environment constrained the design space to the simple optical layout that in-line non-beam-splitting holography affords. The desired measurement required the largest possible sample volume in which the smallest desired particle size (∼5 μm) could still be resolved, and consequently the magnification requirement was driven by the pixel size of the camera and this particle size. The resulting design was a seven-element, double-telecentric, high-precision optical imaging system used to relay and magnify a hologram onto a CCD surface. The system was designed to preserve performance and high resolution over a wide temperature range. Details of the optical design and construction are given. Experimental results demonstrate that the system is capable of recording holograms that can be reconstructed with resolution of better than 6.5 μm within a 15 cm(3) sample volume.